
doi: 10.1155/2012/315757
For Riemannian manifolds M and N, admitting a submersion ϕ with compact fibres, we introduce the projection of a function via its decomposition into horizontal and vertical components. By comparing the Laplacians on M and N, we determine conditions under which a harmonic function on U = ϕ−1(V) ⊂ M projects down, via its horizontal component, to a harmonic function on V ⊂ N.
Differential geometric aspects of harmonic maps, QA1-939, submersion, horizontal and vertical components, Mathematics, Laplacians
Differential geometric aspects of harmonic maps, QA1-939, submersion, horizontal and vertical components, Mathematics, Laplacians
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
