
doi: 10.1155/2011/757868
In 1999, Molodtsov introduced the concept of soft set theory as a general mathematical tool for dealing with uncertainty. Many researchers have studied this theory, and they created some models to solve problems in decision making and medical diagnosis, but most of these models deal only with one expert. This causes a problem with the user, especially with those who use questionnaires in their work and studies. In our model, the user can know the opinion of all experts in one model. So, in this paper, we introduce the concept of a soft expert set, which will more effective and useful. We also define its basic operations, namely, complement, union intersection AND, and OR. Finally, we show an application of this concept in decision-making problem.
Knowledge representation, Reasoning under uncertainty in the context of artificial intelligence, Theory of fuzzy sets, etc.
Knowledge representation, Reasoning under uncertainty in the context of artificial intelligence, Theory of fuzzy sets, etc.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 77 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
