
We consider the stability properties for thermoelastic Bresse system which describes the motion of a linear planar shearable thermoelastic beam. The system consists of three wave equations and two heat equations coupled in certain pattern. The two wave equations about the longitudinal displacement and shear angle displacement are effectively damped by the dissipation from the two heat equations. We use multiplier techniques to prove the exponential stability result when the wave speed of the vertical displacement coincides with the wave speed of the longitudinal or of the shear angle displacement. Moreover, the existence of the global attractor is firstly achieved.
Algebra and Number Theory, Applied Mathematics, QA1-939, Mathematics, Analysis
Algebra and Number Theory, Applied Mathematics, QA1-939, Mathematics, Analysis
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 11 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
