
doi: 10.1155/2007/34301
This paper deals withp-Laplacian systemsut−div(|∇u|p−2∇u)=∫Ωvα(x,t)dx,x∈Ω,t>0,vt−div(|∇v|q−2∇v)=∫Ωuβ(x,t)dx,x∈Ω, t>0,with null Dirichlet boundary conditions in a smooth bounded domainΩ⊂ℝN, wherep,q≥2,α,β≥1. We first get the nonexistence result for related elliptic systems of nonincreasing positive solutions. Secondly by using this nonexistence result, blow up estimates for abovep-Laplacian systems with the homogeneous Dirichlet boundary value conditions are obtained underΩ=BR={x∈ℝN:|x|<R} (R>0). Then under appropriate hypotheses, we establish local theory of the solutions and obtain that the solutions either exist globally or blow up in finite time.
Integro-partial differential equations, homogeneous Dirichlet boundary value conditions, nonexistence result, blow up estimates, QA1-939, Nonlinear parabolic equations, Systems of parabolic equations, boundary value problems, Degenerate parabolic equations, Mathematics
Integro-partial differential equations, homogeneous Dirichlet boundary value conditions, nonexistence result, blow up estimates, QA1-939, Nonlinear parabolic equations, Systems of parabolic equations, boundary value problems, Degenerate parabolic equations, Mathematics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
