Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao DESY Publication Dat...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ECS Journal of Solid State Science and Technology
Article . 2012 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

Luminescence Temperature Quenching for Ce3+and Pr3+d-fEmission in YAG and LuAG

Authors: Ivanovskikh, Konstantin; Ogieglo, J. M.; Zych, A.; Ronda, C. R.; Meijerink, A.;

Luminescence Temperature Quenching for Ce3+and Pr3+d-fEmission in YAG and LuAG

Abstract

The d-f emission from Ce3+ and Pr3+ in garnets is attracting considerable attention, especially in relation to application in white light LEDs and scintillators. An important aspect is the luminescence quenching temperature TQ. It is not trivial to determine TQ and to unravel the quenching mechanism. In this paper the TQ of d-f emission for Ce3+ and Pr3+ are determined by temperature dependent lifetime measurements. The results show a TQ for Pr3+ of 340 K for Y3Al5O12:Pr3+ (YAG:Pr) and 680 K for Lu3Al5O12:Pr3+ (LuAG:Pr). For Ce3+ the TQ is too high to measure. An onset of quenching above 600 K (YAG:Ce) or 700 K (LuAG:Ce) is observed. The differences in TQ between YAG and LuAG are explained by a smaller Stokes shift for the d-f emission in LuAG (∼2300 cm−1) compared to YAG (∼2750 cm−1) derived from low temperature luminescence spectra. The large difference in TQ between Ce3+ and Pr3+ is related to the smaller energy difference between the lowest energetic fd state of Pr3+ and the next lower 4f2 state (3P2) compared to the 5d – 4f1(2F7/2) energy difference for Ce3+. Both observations are consistent with luminescence temperature quenching by non-radiative relaxation from the 5d state to the 4f state described by a configurational coordinate diagram and not by thermally induced photoionization.

Country
Germany
Keywords

info:eu-repo/classification/ddc/540

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    101
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
101
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!