Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of The Elect...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of The Electrochemical Society
Article . 1997 . Peer-reviewed
License: IOP Copyright Policies
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Luminescence of Mn2 + ‐Activated ZnGa2 O 4

Authors: Andries Meijerink; D. Cetin; G. Blasse; S. H. M. Poort;

The Luminescence of Mn2 + ‐Activated ZnGa2 O 4

Abstract

The luminescence of ZnGa 2 0 and ZnGa 2 0 doped with divalent manganese was studied by performing excitation, emission, and decay time measurements in the temperature range from 4.2 to 500 K. From the results of these measurements the following mechanism can be proposed. Excitation into the gallate host lattice leads to the formation of electron-hole pairs which recombine radiatively on either the gallate groups or Mn 2+ or nonradiatively on quenching centers, depending on the temperature. In the first case a blue emission is o served, whereas the maximum of the green Mn 2+ emission is at about 500 nm. At 4.2 K the effective distance of energy transport from excited gallate to emitting Mn 2+ is estimated to be 40 A. Due to the increasing mobility of the exciton this value increases at higher temperatures. Furthermore, the luminescence properties are found to be dependent on the preparation conditions.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    54
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
54
Top 10%
Top 10%
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?