
Star-forming regions show a rich and varied chemistry, including the presence of complex organic molecules—in both the cold gas distributed on large scales and the hot regions close to young stars where protoplanetary disks arise. Recent advances in observational techniques have opened new possibilities for studying this chemistry. In particular, the Atacama Large Millimeter/submillimeter Array has made it possible to study astrochemistry down to Solar System–size scales while also revealing molecules of increasing variety and complexity. In this review, we discuss recent observations of the chemistry of star-forming environments, with a particular focus on complex organic molecules, taking context from the laboratory experiments and chemical models that they have stimulated. The key takeaway points include the following: ▪ The physical evolution of individual sources plays a crucial role in their inferred chemical signatures and remains an important area for observations and models to elucidate. ▪ Comparisons of the abundances measured toward different star-forming environments (high-mass versus low-mass, Galactic Center versus Galactic disk) reveal a remarkable similarity, which is an indication that the underlying chemistry is relatively independent of variations in their physical conditions. ▪ Studies of molecular isotopologues in star-forming regions provide a link with measurements in our own Solar System, and thus may shed light on the chemical similarities and differences expected in other planetary systems.
interstellar medium, ALMA-PILS SURVEY, COMPLEX ORGANIC-MOLECULES, complex molecules, FOS: Physical sciences, SAGITTARIUS B2, submillimeter astronomy, GRAIN-SURFACE-CHEMISTRY, BANK TELESCOPE DETECTION, Astrophysics - Astrophysics of Galaxies, star formation, PROTOSTAR IRAS 16293-2422, interstellar molecules, DEUTERATED METHANOL, Astrophysics - Solar and Stellar Astrophysics, Astrophysics of Galaxies (astro-ph.GA), GAS-PHASE FORMATION, HIGH-RESOLUTION, Solar and Stellar Astrophysics (astro-ph.SR), GALACTIC-CENTER
interstellar medium, ALMA-PILS SURVEY, COMPLEX ORGANIC-MOLECULES, complex molecules, FOS: Physical sciences, SAGITTARIUS B2, submillimeter astronomy, GRAIN-SURFACE-CHEMISTRY, BANK TELESCOPE DETECTION, Astrophysics - Astrophysics of Galaxies, star formation, PROTOSTAR IRAS 16293-2422, interstellar molecules, DEUTERATED METHANOL, Astrophysics - Solar and Stellar Astrophysics, Astrophysics of Galaxies (astro-ph.GA), GAS-PHASE FORMATION, HIGH-RESOLUTION, Solar and Stellar Astrophysics (astro-ph.SR), GALACTIC-CENTER
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 219 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 0.1% |
