
This paper describes an algorithm that uses ray tracing techniques to display bivariate polynomial surface patches. A new intersection algorithm is developed which uses ideas from algebraic geometry to obtain a numerical procedure for finding the intersection of a ray and a patch without subdivision. The algorithm may use complex coordinates for the ( u, v )-parameters of the patches. The choice of these coordinates makes the computations more uniform, so that there are fewer special cases to be considered. In particular, the appearance and disappearance of silhouette edges can be handled quite naturally. The uniformity of these techniques may be suitable for implementation on either a general purpose pipelined machine, or on special purpose hardware.
computer graphics, raster graphics, ray tracing, parametric patches, raster graphics, ray tracing, 000, computer graphics, parametric patches, 004
computer graphics, raster graphics, ray tracing, parametric patches, raster graphics, ray tracing, 000, computer graphics, parametric patches, 004
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 148 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
