
doi: 10.1145/3709719
arXiv: 2501.10858
Large language models (LLMs) have revolutionized natural language interfaces for databases, particularly in text-to-SQL conversion. However, current approaches often generate unreliable outputs when faced with ambiguity or insufficient context. We present Reliable Text-to-SQL (RTS), a novel framework that enhances query generation reliability by incorporating abstention and human-in-the-loop mechanisms. RTS focuses on the critical schema linking phase, which aims to identify the key database elements needed for generating SQL queries. It autonomously detects potential errors during the answer generation process and responds by either abstaining or engaging in user interaction. A vital component of RTS is the Branching Point Prediction (BPP) which utilizes statistical conformal techniques on the hidden layers of the LLM model for schema linking, providing probabilistic guarantees on schema linking accuracy. We validate our approach through comprehensive experiments on the BIRD benchmark, demonstrating significant improvements in robustness and reliability. Our findings highlight the potential of combining transparent-box LLMs with human-in-the-loop processes to create more robust natural language interfaces for databases. For the BIRD benchmark, our approach achieves near-perfect schema linking accuracy, autonomously involving a human when needed. Combined with query generation, we demonstrate that near-perfect schema linking and a small query generation model can almost match SOTA accuracy achieved with a model orders of magnitude larger than the one we use.
Computer Science - Databases, Computer Science - Artificial Intelligence
Computer Science - Databases, Computer Science - Artificial Intelligence
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
