
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>doi: 10.1145/3695467
handle: 20.500.11824/2044
Regular vine copulas (R-vines) provide a comprehensive framework for modeling high-dimensional dependencies using a hierarchy of trees and conditional pair-copulas. While the graphical structure of R-vines is traditionally derived from data, this work introduces a novel approach by utilizing a (conditional) pairwise dependence list. Our primary goal is to construct R-vine graphs that include the maximum possible number of dependence relationships specified in such lists. To tackle this optimization challenge, characterized by exponential growth in the search space and the structural constraints of R-vines, we propose two distinct methodologies: A 0-1 linear programming formulation and a Genetic Algorithm (GA). Additionally, the Randomized Constructive Technique (RCT) is employed to generate the initial population of the GA, serving as a baseline for our comparison. Experimental results reveal the superior performance of the GA over the RCT in terms of success rate, incorporating more relationships than RCT into the constructed R-vine graphs and achieving near-optimal or optimal graph structures.
dependence list, genetic algorithm, copula, optimization, regular vine
dependence list, genetic algorithm, copula, optimization, regular vine
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
