Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.1...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1145/363752...
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2023
License: CC BY
Data sources: Datacite
u:cris
Conference object . 2024
License: CC BY
Data sources: u:cris
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Attacking Graph Neural Networks with Bit Flips: Weisfeiler and Leman Go Indifferent

Weisfeiler and Leman Go Indifferent
Authors: Kummer, Lorenz; Moustafa, Samir; Schrittwieser, Sebastian; Gansterer, Wilfried; Kriege, Nils;

Attacking Graph Neural Networks with Bit Flips: Weisfeiler and Leman Go Indifferent

Abstract

Prior attacks on graph neural networks have mostly focused on graph poisoning and evasion, neglecting the network's weights and biases. Traditional weight-based fault injection attacks, such as bit flip attacks used for convolutional neural networks, do not consider the unique properties of graph neural networks. We propose the Injectivity Bit Flip Attack, the first bit flip attack designed specifically for graph neural networks. Our attack targets the learnable neighborhood aggregation functions in quantized message passing neural networks, degrading their ability to distinguish graph structures and losing the expressivity of the Weisfeiler-Lehman test. Our findings suggest that exploiting mathematical properties specific to certain graph neural network architectures can significantly increase their vulnerability to bit flip attacks. Injectivity Bit Flip Attacks can degrade the maximal expressive Graph Isomorphism Networks trained on various graph property prediction datasets to random output by flipping only a small fraction of the network's bits, demonstrating its higher destructive power compared to a bit flip attack transferred from convolutional neural networks. Our attack is transparent and motivated by theoretical insights which are confirmed by extensive empirical results.

Country
Austria
Related Organizations
Keywords

FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Science - Cryptography and Security, Computer Science - Artificial Intelligence, graph neural network, Computer Science - Neural and Evolutionary Computing, 102019 Machine learning, Machine Learning (cs.LG), Artificial Intelligence (cs.AI), 102019 Machine Learning, bit flip attacks, Graph Neural Networks, Neural and Evolutionary Computing (cs.NE), Cryptography and Security (cs.CR), Bit Flip Attacks

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid