Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://dx.doi.org/10.48550/ar...
Article . 2020
License: CC BY
Data sources: Datacite
versions View all 4 versions
addClaim

Rigidity of Superdense Coding

Authors: Ashwin Nayak; Henry Yuen;

Rigidity of Superdense Coding

Abstract

The famous superdense coding protocol of Bennett and Wiesner demonstrates that it is possible to communicate two bits of classical information by sending only one qubit and using a shared EPR pair. Our first result is that an arbitrary protocol for achieving this task (where there are no assumptions on the sender’s encoding operations or the dimension of the shared entangled state) is locally equivalent to the canonical Bennett-Wiesner protocol. In other words, the superdense coding task is rigid . In particular, we show that the sender and receiver only use additional entanglement (beyond the EPR pair) as a source of classical randomness. We also investigate several questions about higher-dimensional superdense coding, where the goal is to communicate one of d 2 possible messages by sending a d -dimensional quantum state, for general dimensions d . Unlike the d =2 case (i.e., sending a single qubit), there can be inequivalent superdense coding protocols for higher d . We present concrete constructions of inequivalent protocols, based on constructions of inequivalent orthogonal unitary bases for all d > 2. Finally, we analyze the performance of superdense coding protocols where the encoding operators are independently sampled from the Haar measure on the unitary group. Our analysis involves bounding the distinguishability of random maximally entangled states, which may be of independent interest.

Keywords

Quantum Physics, FOS: Physical sciences, Quantum Physics (quant-ph)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green