<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 1721.1/145800
For a function $g\colon\{0,1\}^m\to\{0,1\}$, a function $f\colon \{0,1\}^n\to\{0,1\}$ is called a $g$-polymorphism if their actions commute: $f(g(\mathsf{row}_1(Z)),\ldots,g(\mathsf{row}_n(Z))) = g(f(\mathsf{col}_1(Z)),\ldots,f(\mathsf{col}_m(Z)))$ for all $Z\in\{0,1\}^{n\times m}$. The function $f$ is called an approximate polymorphism if this equality holds with probability close to $1$, when $Z$ is sampled uniformly. We study the structure of exact polymorphisms as well as approximate polymorphisms. Our results include: - We prove that an approximate polymorphism $f$ must be close to an exact polymorphism; - We give a characterization of exact polymorphisms, showing that besides trivial cases, only the functions $g = \mathsf{AND}, \mathsf{XOR}, \mathsf{OR}, \mathsf{NXOR}$ admit non-trivial exact polymorphisms. We also study the approximate polymorphism problem in the list-decoding regime (i.e., when the probability equality holds is not close to $1$, but is bounded away from some value). We show that if $f(x \land y) = f(x) \land f(y)$ with probability larger than $s_\land \approx 0.815$ then $f$ correlates with some low-degree character, and $s_\land$ is the optimal threshold for this property. Our result generalize the classical linearity testing result of Blum, Luby and Rubinfeld, that in this language showed that the approximate polymorphisms of $g = \mathsf{XOR}$ are close to XOR's, as well as a recent result of Filmus, Lifshitz, Minzer and Mossel, showing that the approximate polymorphisms of AND can only be close to AND functions.
43 pages
FOS: Computer and information sciences, Discrete Mathematics (cs.DM), FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO), Computer Science - Discrete Mathematics
FOS: Computer and information sciences, Discrete Mathematics (cs.DM), FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO), Computer Science - Discrete Mathematics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |