Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DBLP
Conference object
Data sources: DBLP
versions View all 2 versions
addClaim

LAVA

fine-grained 3D indoor wireless coverage for small IoT devices
Authors: Rotman Ivan Zelaya; William Sussman; Jeremy Gummeson; Kyle Jamieson; Wenjun Hu;
Abstract

Small IoT devices deployed in challenging locations suffer from uneven 3D coverage in complex environments. This work optimizes indoor coverage with LAVA, a Large Array of Vanilla Amplifiers. LAVA is a standard-agnostic cooperative mesh of elements, i.e., RF devices each consisting of several switched input and output antennas connected to fixed-gain amplifiers. Each LAVA element is further equipped with rudimentary power sensing to detect nearby transmissions. The elements report power readings to the LAVA control plane, which then infers active link sessions without explicitly interacting with the endpoint transmitter or receiver. With simple on-off control of amplifiers and antenna switching, LAVA boosts passing signals via multi hop amplify-and-forward. LAVA explores a middle ground between smart surfaces and physical-layer relays. Multi-hopping over short inter-hop distances exerts more control over the end-to-end trajectory, supporting fine-grained coverage and spatial reuse. Ceiling testbed results show throughput improvements to individual Wi-Fi links by 50% on average and up to 100% at 15 dBm transmit power (193% on average, up to 8x at 0 dBm). ZigBee links see up to 17 dB power gain. For pairs of co-channel concurrent links, LAVA provides average per-link throughput improvements of 517% at 0 dBm and 80% at 15 dBm.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!