
arXiv: 1911.05096
In the classical optimal stopping problem, a player is given a sequence of random variables $X_1\ldots X_n$ with known distributions. After observing the realization of $X_i$, the player can either accept the observed reward from $X_i$ and stop, or reject the observed reward from $X_i$ and continue to observe the next variable $X_{i+1}$ in the sequence. Under any fixed ordering of the random variables, an optimal stopping policy, one that maximizes the player's expected reward, is given by the solution of a simple dynamic program. In this paper, we investigate the relatively less studied question of selecting the order in which the random variables should be observed so as to maximize the expected reward at the stopping time. To demonstrate the benefits of order selection, we prove a novel prophet inequality showing that, when the support of each random variable has size at most 2, the optimal ordering can achieve an expected reward that is within a factor of 1.25 of the expected hindsight maximum; this is an improvement over the corresponding factor of 2 for the worst-case ordering. We also provide a simple $O(n^2)$ algorithm for finding an optimal ordering in this case. Perhaps surprisingly, we demonstrate that a slightly more general case - each random variable $X_i$ is restricted to have 3-point support of form $\{0, m_i, 1\}$ - is NP-hard, and provide an FPTAS for that case.
26 pages
FOS: Computer and information sciences, Discrete Mathematics (cs.DM), Computer Science - Discrete Mathematics
FOS: Computer and information sciences, Discrete Mathematics (cs.DM), Computer Science - Discrete Mathematics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 13 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
