
handle: 11572/273741
A learning process with the plasticity property often requires reinforcement signals to guide the process. However, in some tasks (e.g. maze-navigation), it is very difficult (or impossible) to measure the performance of an agent (i.e. a fitness value) to provide reinforcements since the position of the goal is not known. This requires finding the correct behavior among a vast number of possible behaviors without having the knowledge of the reinforcement signals. In these cases, an exhaustive search may be needed. However, this might not be feasible especially when optimizing artificial neural networks in continuous domains. In this work, we introduce novelty producing synaptic plasticity (NPSP), where we evolve synaptic plasticity rules to produce as many novel behaviors as possible to find the behavior that can solve the problem. We evaluate the NPSP on maze-navigation on deceptive maze environments that require complex actions and the achievement of subgoals to complete. Our results show that the search heuristic used with the proposed NPSP is indeed capable of producing much more novel behaviors in comparison with a random search taken as baseline.
FOS: Computer and information sciences, Theory of computation, Evolutionary algorithms; Unsupervised learning, novelty, synaptic plasticity, neuro-evolution, Computer Science - Artificial Intelligence, Novelty, Computer Science - Neural and Evolutionary Computing, Neuro-evolution, Unsupervised learning, Synaptic plasticity, Artificial Intelligence (cs.AI), Neural and Evolutionary Computing (cs.NE)
FOS: Computer and information sciences, Theory of computation, Evolutionary algorithms; Unsupervised learning, novelty, synaptic plasticity, neuro-evolution, Computer Science - Artificial Intelligence, Novelty, Computer Science - Neural and Evolutionary Computing, Neuro-evolution, Unsupervised learning, Synaptic plasticity, Artificial Intelligence (cs.AI), Neural and Evolutionary Computing (cs.NE)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
