
We derive simple bounds on the queue distribution in finite-buffer queues with Markovian arrivals. Our technique relies on a subtle equivalence between tail events and stopping times orderings. The bounds capture a truncated exponential behavior, involving joint horizontal and vertical shifts of an exponential function; this is fundamentally different than existing results capturing horizontal shifts only. Using the same technique, we obtain similar bounds on the loss distribution, which is a key metric to understand the impact of finite-buffer queues on real-time applications. Simulations show that the bounds are accurate in heavy-traffic regimes, and improve existing ones by orders of magnitude. In the limiting regime with utilization ρ=1 and iid arrivals, the bounds on the queue size distribution are insensitive to the arrivals distribution.
Informatik, Wirtschaftswissenschaften, QA76
Informatik, Wirtschaftswissenschaften, QA76
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
