Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ACM Transactions on ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DBLP
Article
Data sources: DBLP
versions View all 2 versions
addClaim

Urdu Named Entity Recognition

Corpus Generation and Deep Learning Applications
Authors: Safia Kanwal; Muhammad Kamran Malik; Khurram Shahzad 0002; Faisal Aslam; Zubair Nawaz;

Urdu Named Entity Recognition

Abstract

Named Entity Recognition (NER) plays a pivotal role in various natural language processing tasks, such as machine translation and automatic question-answering systems. Recognizing the importance of NER, a plethora of NER techniques for Western and Asian languages have been developed. However, despite having over 490 million Urdu language speakers worldwide, NER resources for Urdu are either non-existent or inadequate. To fill this gap, this article makes four key contributions. First, we have developed the largest Urdu NER corpus, which contains 926,776 tokens and 99,718 carefully annotated NEs. The developed corpus has at least doubled the number of manually tagged NEs as compared to any of the existing Urdu NER corpora. Second, we have generated six new word embeddings using three different techniques, fastText, Word2vec, and Glove, on two corpora of Urdu text. These are the only publicly available embeddings for the Urdu language, besides the recently released Urdu word embeddings by Facebook. Third, we have pioneered in the application of deep learning techniques, NN and RNN, for Urdu named entity recognition. Finally, we have performed 10-folds of 32 different experiments using the combinations of a traditional supervised learning and deep learning techniques, seven types of word embeddings, and two different Urdu NER datasets. Based on the analysis of the results, several valuable insights are provided about the effectiveness of deep learning techniques, the impact of word embeddings, and variations of datasets.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!