<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 20.500.11824/1520 , 10810/57921 , 20.500.11824/1007
AbstractEstimation of Distribution Algorithms have been successfully used to solve permutation-based Combinatorial Optimization Problems. In this case, the algorithms use probabilistic models specifically designed for codifying probability distributions over permutation spaces. One class of these probability models are distance-based exponential models, and one example of this class is the Mallows model. In spite of its practical success, the theoretical analysis of Estimation of Distribution Algorithms for permutation-based Combinatorial Optimization Problems has not been developed as extensively as it has been for binary problems. With this motivation, this paper presents a first mathematical analysis of the convergence behavior of Estimation of Distribution Algorithms based on Mallows models. The model removes the randomness of the algorithm in order to associate a dynamical system to it. Several scenarios of increasing complexity with different fitness functions and initial probability distributions are analyzed. The obtained results show: a) the strong dependence of the final results on the initial population, and b) the possibility to converge to non-degenerate distributions even in very simple scenarios, which has not been reported before in the literature.
Mathematical Modeling, mathematical modeling, Mallows Model, permutation based combinatorial optimization problems, dynamical systems, Dynamical Systems, Permutation-based Combinatorial Optimization Problems, mallows model, estimation of distribution algorithms, Estimation of Distribution Algorithms
Mathematical Modeling, mathematical modeling, Mallows Model, permutation based combinatorial optimization problems, dynamical systems, Dynamical Systems, Permutation-based Combinatorial Optimization Problems, mallows model, estimation of distribution algorithms, Estimation of Distribution Algorithms
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |