
doi: 10.1145/3293536
Recent advances in cross-technology communication have significantly improved the spectrum efficiency in the same Industrial, Scientific, and Medical band among heterogeneous wireless devices (e.g., WiFi and ZigBee). However, further performance improvement in the whole network is hampered because the cross-technology network layer is missing. As the first cross-technology network layer design, our work, named ECT , opens a promising direction for significantly reducing the packet delivery delay via collaborative and concurrent cross-technology communication between WiFi and ZigBee devices. Specifically, ECT can dynamically change the nodes’ priorities and reduce the delivery delay from high-priority nodes under unreliable links. The key idea of ECT is to leverage the concurrent transmission of important data and raw data from ZigBee nodes to the WiFi access point. We extensively evaluate ECT under different network settings, and results show that our ECT’s packet delivery delay is more than 29 times lower than the current state-of-the-art solution.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 11 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
