Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ACM Transactions on ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DBLP
Article
Data sources: DBLP
versions View all 2 versions
addClaim

Energy-Harvesting Wireless Sensor Networks (EH-WSNs)

A Review
Authors: Kofi Sarpong Adu-Manu; Nadir H. Adam; Cristiano Tapparello; Hoda Ayatollahi; Wendi B. Heinzelman;

Energy-Harvesting Wireless Sensor Networks (EH-WSNs)

Abstract

Wireless Sensor Networks (WSNs) are crucial in supporting continuous environmental monitoring, where sensor nodes are deployed and must remain operational to collect and transfer data from the environment to a base-station. However, sensor nodes have limited energy in their primary power storage unit, and this energy may be quickly drained if the sensor node remains operational over long periods of time. Therefore, the idea of harvesting ambient energy from the immediate surroundings of the deployed sensors, to recharge the batteries and to directly power the sensor nodes, has recently been proposed. The deployment of energy harvesting in environmental field systems eliminates the dependency of sensor nodes on battery power, drastically reducing the maintenance costs required to replace batteries. In this article, we review the state-of-the-art in energy-harvesting WSNs for environmental monitoring applications, including Animal Tracking, Air Quality Monitoring, Water Quality Monitoring, and Disaster Monitoring to improve the ecosystem and human life. In addition to presenting the technologies for harvesting energy from ambient sources and the protocols that can take advantage of the harvested energy, we present challenges that must be addressed to further advance energy-harvesting-based WSNs, along with some future work directions to address these challenges.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    300
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
300
Top 0.1%
Top 1%
Top 0.1%
bronze