
handle: 11250/2491293
There is a consensus that exascale systems should operate within a power envelope of 20MW. Consequently, energy conservation is still considered as the most crucial constraint if such systems are to be realized.So far, most research on this topic focused on strategies such as power capping and dynamic power management. Although these approaches can reduce power consumption, we believe that they might not be sufficient to reach the exascale energy-efficiency goals. Hence, we aim to adopt techniques from embedded systems, where energy-efficiency has always been the fundamental objective.A successful energy-saving technique used in embedded systems is to integrate fine-grained autotuning with dynamic voltage and frequency scaling. In this paper, we apply a similar technique to a real-world HPC application. Our experimental results on a HPC cluster indicate that such an approach saves up to 20% of energy compared to the baseline configuration, with negligible performance loss.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 17 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
