
handle: 1721.1/86882
Developing software that scales on multicore processors is an inexact science dominated by guesswork, measurement, and expensive cycles of redesign and reimplementation. Current approaches are workload-driven and, hence, can reveal scalability bottlenecks only for known workloads and available software and hardware. This paper introduces an interface-driven approach to building scalable software. This approach is based on the scalable commutativity rule , which, informally stated, says that whenever interface operations commute, they can be implemented in a way that scales. We formalize this rule and prove it correct for any machine on which conflict-free operations scale, such as current cache-coherent multicore machines. The rule also enables a better design process for scalable software: programmers can now reason about scalability from the earliest stages of interface definition through software design, implementation, and evaluation.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 108 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
