
Modern JavaScript engines optimize hot functions using a JIT compiler along with type information gathered by an online profiler. However, the profiler's information can be unsound and when unexpected types are encountered the engine must recover using an expensive mechanism called deoptimization. In this paper we describe a method to significantly reduce the number of deoptimizations observed by client-side JavaScript engines by using ahead-of-time profiling on the server-side. Unlike previous work on ahead-of-time profiling for statically-typed languages such as Java, our technique must operate on a dynamically-typed language, which significantly changes the required insights and methods to make the technique effective. We implement our proposed technique using the SpiderMonkey JavaScript engine, and we evaluate our implementation using three different kinds of benchmarks: the industry-standard Octane benchmark suite, a set of JavaScript physics engines, and a set of real-world websites from the Membench50 benchmark suite. We show that using ahead-of-time profiling provides significant performance benefits over the baseline vanilla SpiderMonkey engine.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
