
Accurate yield estimation is one of the important yet challenging tasks for both pre-silicon verification and post-silicon validation. In this paper, we propose a novel method of Bayesian model fusion on Bernoulli distribution (BMF-BD) for efficient yield estimation at the late stage by borrowing the prior knowledge from an early stage. BMF-BD is particularly developed to handle the cases where the pre-silicon simulation and/or post-silicon measurement results are binary: either "pass" or "fail". The key idea is to model the binary simulation/measurement outcome as a Bernoulli distribution and then encode the prior knowledge as a Beta distribution based on the theory of conjugate prior. As such, the late-stage yield can be accurately estimated through Bayesian inference with very few late-stage samples. Several circuit examples demonstrate that BMF-BD achieves up to 10× cost reduction over the conventional estimator without surrendering any accuracy.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 19 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
