Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of the ACMarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of the ACM
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The isomorphism conjecture fails relative to a random oracle

Authors: Kurtz, Stuart A.; Mahaney, Stephen R.; Royer, James S.;

The isomorphism conjecture fails relative to a random oracle

Abstract

Summary: Berman and Hartmanis (1977) conjectured that there is a polynomial-time computable isomorphism between any two languages complete for NP with respect to polynomial-time computable many-one (Karp) reductions. Joseph and Young (1985) gave a structural definition of a class of NP-complete sets -- the \(k\)-creative sets -- and defined a class of sets (the \(K^k_f\)'s) that are necessarily \(k\)-creative. They went on to conjecture that certain of these \(K^k_f\)'s are not isomorphic to the standard NP-complete sets. Clearly, the Berman-Hartman is and Joseph-Young conjectures cannot both be correct. We introduce a family of strong one-way functions, the scrambling functions. If \(f\) is a scrambling function, then \(K^k_f\) is not isomorphic to the standard NP-complete sets, as Joseph and Young conjectured, and the Berman-Hartmanis conjecture fails. Indeed, if scrambling functions exist, then the isomorphism also fails at higher complexity classes such as EXP and NEXP. As evidence for the existence of scrambling functions, we show that much more powerful one-way functions -- the annihilating functions -- exist relative to a random oracle. Random oracles are the first examples of oracles relative to which the isomorphism conjecture fails with respect to higher classes such as EXP and NEXP.

Country
United States
Related Organizations
Keywords

one-way functions, Computer Sciences, annihilating functions, Complexity classes (hierarchies, relations among complexity classes, etc.), polynomial-time computable isomorphism, scrambling functions, oracles

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    65
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
65
Average
Top 10%
Top 10%
Green
hybrid