
Learning to rank represents a category of effective ranking methods for information retrieval. While the primary concern of existing research has been accuracy, learning efficiency is becoming an important issue due to the unprecedented availability of large-scale training data and the need for continuous update of ranking functions. In this paper, we investigate parallel learning to rank, targeting simultaneous improvement in accuracy and efficiency.
mapreduce, Databases and Information Systems, parallel algorithms, information retrieval, learning to rank, cooperative coevolution
mapreduce, Databases and Information Systems, parallel algorithms, information retrieval, learning to rank, cooperative coevolution
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
