Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DBLP
Conference object
Data sources: DBLP
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Learning to re-rank

query-dependent image re-ranking using click data
Authors: Vidit Jain; Manik Varma;

Learning to re-rank

Abstract

Our objective is to improve the performance of keyword based image search engines by re-ranking their original results. To this end, we address three limitations of existing search engines in this paper. First, there is no straight-forward, fully automated way of going from textual queries to visual features. Image search engines therefore primarily rely on static and textual features for ranking. Visual features are mainly used for secondary tasks such as finding similar images. Second, image rankers are trained on query-image pairs labeled with relevance judgments determined by human experts. Such labels are well known to be noisy due to various factors including ambiguous queries, unknown user intent and subjectivity in human judgments. This leads to learning a sub-optimal ranker. Finally, a static ranker is typically built to handle disparate user queries. The ranker is therefore unable to adapt its parameters to suit the query at hand which again leads to sub-optimal results. We demonstrate that all of these problems can be mitigated by employing a re-ranking algorithm that leverages aggregate user click data.We hypothesize that images clicked in response to a query are mostly relevant to the query. We therefore re-rank the original search results so as to promote images that are likely to be clicked to the top of the ranked list. Our re-ranking algorithm employs Gaussian Process regression to predict the normalized click count for each image, and combines it with the original ranking score. Our approach is shown to significantly boost the performance of the Bing image search engine on a wide range of tail queries.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    90
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
90
Top 10%
Top 1%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!