
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>We give a query algorithm for agnostically learning decision trees with respect to the uniform distribution on inputs. Given black-box access to an *arbitrary* binary function f on the n-dimensional hypercube, our algorithm finds a function that agrees with f on almost (within an epsilon fraction) as many inputs as the best size-t decision tree, in time poly(n,t,1e). This is the first polynomial-time algorithm for learning decision trees in a harsh noise model. We also give a *proper* agnostic learning algorithm for juntas, a sub-class of decision trees, again using membership queries. Conceptually, the present paper parallels recent work towards agnostic learning of halfspaces (Kalai et al, 2005); algorithmically, it is more challenging. The core of our learning algorithm is a procedure to implicitly solve a convex optimization problem over the L1 ball in 2n dimensions using an approximate gradient projection method.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 22 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
