
In this paper we propose a new dynamic Metric Access Method (MAM) called DBM*-Tree, which uses precomputed distances to reduce the construction cost avoiding repeated calculus of distance. Making use of the pre-calculated distances cost of similarity queries are also reduced by taking various local representative objects in order to increment the pruning of irrelevant elements during the query. We also propose a new algorithm to select the suitable subtree in the insertion operation, which is an evolution of the previous methods. Empiric tests on real and synthetic data have shown evidence that DBM*-Tree requires 25 % less average distance computing than Density Based Metric - Tree (DBM-Tree) which is one of the most efficient and recent MAM found in the literature.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
