Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ACM Transactions on ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
http://ttic.uchicago.edu/~cjul...
Part of book or chapter of book
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/3-540-...
Part of book or chapter of book . 2003 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
ACM Transactions on Algorithms
Article . 2007 . Peer-reviewed
Data sources: Crossref
ACM Transactions on Algorithms
Article . 2007 . Peer-reviewed
Data sources: Crossref
DBLP
Conference object
Data sources: DBLP
DBLP
Article
Data sources: DBLP
versions View all 5 versions
addClaim

Algorithmic aspects of bandwidth trading

Authors: Randeep Bhatia; Julia Chuzhoy; Ari Freund 0001; Joseph Naor;

Algorithmic aspects of bandwidth trading

Abstract

We study algorithmic problems that are motivated by bandwidth trading in next-generation networks. Typically, bandwidth trading involves sellers (e.g., network operators) interested in selling bandwidth pipes that offer to buyers a guaranteed level of service for a specified time interval. The buyers (e.g., bandwidth brokers) are looking to procure bandwidth pipes to satisfy the reservation requests of end-users (e.g., Internet subscribers). Depending on what is available in the bandwidth exchange, the goal of a buyer is to either spend the least amount of money so as to satisfy all the reservations made by its customers, or to maximize its revenue from whatever reservations can be satisfied. We model this as a real-time nonpreemptive scheduling problem in which machine types correspond to bandwidth pipes and jobs correspond to end-user reservation requests. Each job specifies a time interval during which it must be processed, and a set of machine types on which it can be executed. If necessary, multiple machines of a given type may be allocated, but each must be paid for. Finally, each job has associated with it a revenue, which is realized if the job is scheduled on some machine. There are two versions of the problem that we consider. In the cost minimization version, the goal is to minimize the total cost incurred for scheduling all jobs, and in the revenue maximization version the goal is to maximize the revenue of the jobs that are scheduled for processing on a given set of machines. We consider several variants of the problems that arise in practical scenarios, and provide constant factor approximations.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Top 10%
Average
bronze