
arXiv: nlin/0212020
A square lattice distribution of coupled oscillators that have heteroclinic cycle attractors is studied. In this system, we find a novel type of patterns that is spatially disordered and periodic in time. These patterns are limit cycle attractors in the ambient phase space (i.e. not chaotic) and many limit cycles exist dividing the phase space as their basins. The patterns are constructed with a local law of difference of phases between the oscillators. The number of patterns grows exponentially with increasing of the number of oscillators.
10 pages, 6 figures
FOS: Physical sciences, Chaotic Dynamics (nlin.CD), Nonlinear Sciences - Chaotic Dynamics
FOS: Physical sciences, Chaotic Dynamics (nlin.CD), Nonlinear Sciences - Chaotic Dynamics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
