
In this paper, the transition joint probability density function of the solution of geometric Brownian motion (GBM) equation is obtained via Lie group theory of differential equations (DEs). Lie symmetry analysis is applied to find new solutions for time-fractional Fokker–Planck–Kolmogorov equation of GBM. This analysis classifies the forms of the solutions for the equation by the similarity variables arising from the symmetry operators. Finally, an analytic method called invariant subspace method is applied in order to find another exact solution.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
