Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao zbMATH Openarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2011
Data sources: zbMATH Open
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

CLASSES OF GRADIENT RICCI SOLITONS

Classes of gradient Ricci solitons
Authors: Bercu, Gabriel; Postolache, Mihai;

CLASSES OF GRADIENT RICCI SOLITONS

Abstract

We introduce a study of Riemannian manifold M = ℝ2 endowed with a metric of diagonal type of the form [Formula: see text], where g is a positive function, of C∞-class, depending on the variable x2 only. We emphasize the role of metric [Formula: see text] in determining manifolds having negative, null or positive sectional curvature. Within this framework, we find a wide class of gradient Ricci solitons (see, Theorems 4 and 7) and specialize these results to discuss some 2D and 4D case studies. The present study can be thought as a natural continuation of those included in monograph [22] by Constantin Udrişte, and to those in the research article [12] by Richard S. Hamilton (the result in Proposition 8 is precisely the famous "Hamilton cigar" in polar coordinates).

Keywords

Special Riemannian manifolds (Einstein, Sasakian, etc.), Riemannian manifold, sectional curvature, gradient Ricci soliton, Global Riemannian geometry, including pinching

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!