
A particularly simple and mathematically elegant example of chaos in a three-dimensional flow is examined in detail. It has the property of cyclic symmetry with respect to interchange of the three orthogonal axes, a single bifurcation parameter that governs the damping and the attractor dimension over most of the range 2 to 3 (as well as 0 and 1) and whose limiting value b = 0 gives Hamiltonian chaos, three-dimensional deterministic fractional Brownian motion, and an interesting symbolic dynamic.
Symbolic dynamics, Strange attractors, chaotic dynamics of systems with hyperbolic behavior
Symbolic dynamics, Strange attractors, chaotic dynamics of systems with hyperbolic behavior
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 39 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
