
Based on a deformation of the quantum mechanical phase space we study q-deformations of quantum mechanics for qk=1 and 0<q<1. After defining a q-analog of the scalar product on the function space we discuss and compare the time evolution of operators in both cases. A formulation of quantum mechanics for qk=1 is given and the dynamics for the free Hamiltonian is studied. For 0<q<1 we develop a deformation of quantum mechanics and the cases of the free Hamiltonian and the one with a x2-potential are solved in terms of basic hypergeometric functions.
Quantum groups (quantized enveloping algebras) and related deformations, Quantum groups and related algebraic methods applied to problems in quantum theory, Commutation relations and statistics as related to quantum mechanics (general)
Quantum groups (quantized enveloping algebras) and related deformations, Quantum groups and related algebraic methods applied to problems in quantum theory, Commutation relations and statistics as related to quantum mechanics (general)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
