
Local and global regularity properties of weak solutions of the Schrödinger equation −Δu+qu=λu play an important role in the spectral theory of the corresponding operator [Formula: see text]. Central among these properties is local boundedness of the solutions u, which is derived in an elementary way for potentials q whose negative parts q− lie in the local Kato class K loc . The method also provides mean value inequalities for and, in case q+ is in K loc too, continuity of u. To employ these mean value inequalities for bounds on eigenfunctions of T in a fixed direction, classes Kρ are introduced which reflect the behavior of q at infinity. A couple of examples allow to compare these classes with more conservative ones like the Stummel class Q and the global Kato class K. The fundamental property of local boundedness of solutions also serves as a base for a very short proof of the self-adjointness of T if the operator is bounded from below and q−∈K loc . If q(x) is permitted to go to −∞, as |x|→∞, a large class K ρ which guarantees self-adjointness of T is derived and contains the case q−(x)= O (|x|2). The Spectral Theorem then allows to deduce rapidly decaying bounds on eigenfunctions for discrete eigenvalues, at least if q−(x)= o (|x|2). This is also the condition under which the existence of a bounded solution is sufficient to guarantee λ∈σ(T). Here q−(x)= O (|x|2) appears as a borderline case and is discussed at some length by means of an explicit example. The class of admissible operators extending to these borderline cases with potentials singular locally and at infinity, the regularity results for solutions being mostly optimal, as demonstrated by numerous examples, yet the proofs being shorter and more straightforward than those to be found in literature for smaller classes and weaker results, the sets Kρ under consideration and the methods employed appear to be quite natural.
rapidly decaying bounds on eigenfunctions, Regularity of generalized solutions of PDE, Schrödinger operator, Schrödinger equation, weighted Kato-class, General topics in linear spectral theory for PDEs, local boundedness of the solutions, review article, asymptotic behaviour of bound states, selfadjointness of Schrödinger operators
rapidly decaying bounds on eigenfunctions, Regularity of generalized solutions of PDE, Schrödinger operator, Schrödinger equation, weighted Kato-class, General topics in linear spectral theory for PDEs, local boundedness of the solutions, review article, asymptotic behaviour of bound states, selfadjointness of Schrödinger operators
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
