<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The operator-theoretic renormalization group (RG) methods are powerful analytic tools to explore spectral properties of field-theoretical models such as quantum electrodynamics (QED) with non-relativistic matter. In this paper, these methods are extended and simplified. In a companion paper, our variant of operator-theoretic RG methods is applied to establishing the limiting absorption principle in non-relativistic QED near the ground state energy.
Mathematics - Functional Analysis, Mathematics - Spectral Theory, FOS: Mathematics, FOS: Physical sciences, Mathematical Physics (math-ph), Spectral Theory (math.SP), Mathematical Physics, Functional Analysis (math.FA)
Mathematics - Functional Analysis, Mathematics - Spectral Theory, FOS: Mathematics, FOS: Physical sciences, Mathematical Physics (math-ph), Spectral Theory (math.SP), Mathematical Physics, Functional Analysis (math.FA)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 18 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |