
We investigate quantum Hall effects in silicene by applying electric field $E_z$ parallel to magnetic field. Silicene is a monolayer of silicon atoms forming a two-dimensional honeycomb lattice, and shares almost every remarkable property with graphene. A new feature is its buckled structure, due to which the band structure can be controlled externally by changing $E_z$. The low energy physics of silicene is described by massive Dirac fermions, where the mass is a function of $E_z$ and becomes zero at the critical field $E_{\text{cr}}$. We show that there are no zero energy states due to the Dirac mass term except at the critical electric field $E_{\text{cr}}$. Furthermore it is shown that the 4-fold degenerate zero-energy states are completely resolved even without considering Coulomb interactions. These features are highly contrasted with those in graphene, demonstrating that silicene has a richer structure. The prominent feature is that, by applying the electric field, we can control the valley degeneracy. As a function of $E_z$, Hall plateaux appear at the filling factors $��=0,\pm 1,\pm 2,\pm 3,...$ except for the points where level crossings occur.
7 pages, 6 figures
Condensed Matter - Materials Science, Condensed Matter - Mesoscale and Nanoscale Physics, Mesoscale and Nanoscale Physics (cond-mat.mes-hall), Materials Science (cond-mat.mtrl-sci), FOS: Physical sciences
Condensed Matter - Materials Science, Condensed Matter - Mesoscale and Nanoscale Physics, Mesoscale and Nanoscale Physics (cond-mat.mes-hall), Materials Science (cond-mat.mtrl-sci), FOS: Physical sciences
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 58 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
