
arXiv: 1109.0812
The relationship between pulsar-like compact stars and gravitational waves is briefly reviewed. Due to regular spins, pulsars could be useful tools for us to detect ~nano-Hz low-frequency gravitational waves by pulsar-timing array technique; besides, they would also be ~kilo-Hz high-frequency gravitational wave radiators because of their compactness. The wave strain of an isolate pulsar depends on the equation state of cold matter at supra-nuclear densities. Therefore, a real detection of gravitational wave should be very meaningful in gravity physics, micro-theory of elementary strong interaction, and astronomy.
11 pages, 3 figures; in: Gravitation and Astrophysics (Proceedings of the IX Asia-Pacific International Conference, 29 June - 2 July, 2009, Wuhan), eds. J. Luo, Z. B. Zhou, H. C. Yeh, and J. P. Hsu, World Scientific, p.162-172
High Energy Astrophysical Phenomena (astro-ph.HE), FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), Astrophysics - High Energy Astrophysical Phenomena, General Relativity and Quantum Cosmology
High Energy Astrophysical Phenomena (astro-ph.HE), FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), Astrophysics - High Energy Astrophysical Phenomena, General Relativity and Quantum Cosmology
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
