<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
We consider the scattering of two-bosons with negative parity and spin 0 or 1. Starting from helicity partial-wave scattering amplitudes we derive transformations that eliminate all kinematical constraints. Such amplitudes are expected to satisfy partial-wave dispersion relations and therefore provide a suitable basis for data analysis and the construction of effective field theories. Our derivation relies on a decomposition of the various scattering amplitudes into suitable sets of invariant functions. A novel algebra was developed that permits the efficient computation of such functions in terms of computer algebra codes.
14 pages, 8 tables
High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), FOS: Physical sciences
High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), FOS: Physical sciences
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 19 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |