Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Canadian Journal of ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Canadian Journal of Forest Research
Article . 2006 . Peer-reviewed
License: CSP TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effective heat of combustion for flaming combustion of conifers

Authors: Vytenis Babrauskas;

Effective heat of combustion for flaming combustion of conifers

Abstract

The heat of combustion of burning trees is often used in forest-fire hazard modeling to relate mass-loss results to the heat produced; therefore reliable values are needed. Experimental results for the effective heat of combustion of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees are presented as a function of moisture content. It is also shown that during a forest fire, the effective heat of combustion does not correspond to the oxygen-bomb-test value. Instead, the value will always be lower, since the heat of combustion of char is higher than that of the pyrolysate vapors, and char mostly remains unburned during a forest fire. These are the first and only experimental results obtained from testing of actual trees. But results from benchmark testing and studies on wood products by other investigators are broadly consistent with our findings. It is further shown that moisture content has a major effect on the effective heat of combustion. A quantitative expression for the effective heat of combustion, as a function of moisture content, is obtained. Benchmark testing by earlier researchers established that generally there is only a slight species effect on the heat of combustion; therefore the present Douglas-fir results can be applied in more general forest-fire modeling.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    62
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
62
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!