
doi: 10.1139/p07-206
We point out that the existence of metastable, τ >103 s, negatively charged electroweak-scale particles (X–) alters the predictions for lithium and other primordial elemental abundances for A > 4 via the formation of bound states with nuclei during Big-Bang nucleosynthesis (BBN). In particular, we show that the bound states of X– with helium, formed at temperatures of about T = 108 K, lead to the catalytic enhancement of 6Li production, which is eight orders of magnitude more efficient than the standard channel. In particle physics models, where subsequent decay of X– does not lead to large nonthermal BBN effects, this directly translates to the level of sensitivity to the number density of long-lived X– particles (τ > 105 s) relative to entropy of nX – / s [Formula: see text] 3 × 10–17, which is one of the most stringent probes of electroweak scale remnants known to date. It is also argued that unstable charged particles with lifetime of order ~2000 s may naturally lead to the depletion of 7Li by a factor of two, making it consistent with observationally determined abundances. PACS No.: 98.80.Ft
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
