Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Canadian Journal of ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Canadian Journal of Physics
Article . 2013 . Peer-reviewed
License: CSP TDM
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2013
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Generalized derivations and general relativity

Authors: Michael Heller; Wiesław Sasin; Tomasz Miller; Leszek Pysiak;

Generalized derivations and general relativity

Abstract

We construct differential geometry (connection, curvature, etc.) based on generalized derivations of an algebra [Formula: see text]. Such a derivation, introduced by Brešar in 1991, is given by a linear mapping [Formula: see text] such that there exists a usual derivation, d, of [Formula: see text] satisfying the generalized Leibniz rule u(ab) = u(a)b + ad(b) for all [Formula: see text]. The generalized geometry “is tested” in the case of the algebra of smooth functions on a manifold. We then apply this machinery to study generalized general relativity. We define the Einstein–Hilbert action and deduce from it Einstein’s field equations. We show that for a special class of metrics containing, besides the usual metric components, only one nonzero term, the action reduces to the O’Hanlon action that is the Brans–Dicke action with potential and with the parameter ω equal to zero. We also show that the generalized Einstein equations (with zero energy–stress tensor) are equivalent to those of the Kaluza–Klein theory satisfying a “modified cylinder condition” and having a noncompact extra dimension. This opens a possibility to consider Kaluza–Klein models with a noncompact extra dimension that remains invisible for a macroscopic observer. In our approach, this extra dimension is not an additional physical space–time dimension but appears because of the generalization of the derivation concept.

Keywords

FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), Mathematical Physics (math-ph), General Relativity and Quantum Cosmology, Mathematical Physics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Green
bronze