Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
SIAM Journal on Scientific Computing
Article . 2023 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2022
License: CC BY
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Port-Hamiltonian Dynamic Mode Decomposition

Authors: Riccardo Morandin; Jonas Nicodemus; Benjamin Unger;

Port-Hamiltonian Dynamic Mode Decomposition

Abstract

We present a novel physics-informed system identification method to construct a passive linear time-invariant system. In more detail, for a given quadratic energy functional, measurements of the input, state, and output of a system in the time domain, we find a realization that approximates the data well while guaranteeing that the energy functional satisfies a dissipation inequality. To this end, we use the framework of port-Hamiltonian (pH) systems and modify the dynamic mode decomposition, respectively operator inference, to be feasible for continuous-time pH systems. We propose an iterative numerical method to solve the corresponding least-squares minimization problem. We construct an effective initialization of the algorithm by studying the least-squares problem in a weighted norm, for which we present the analytical minimum-norm solution. The efficiency of the proposed method is demonstrated with several numerical examples.

Keywords

Dynamical Systems (math.DS), Numerical Analysis (math.NA), Systems and Control (eess.SY), 37J06, 37M99, 65P10, 93A30, 93B30, 93C05, Electrical Engineering and Systems Science - Systems and Control, Optimization and Control (math.OC), FOS: Mathematics, FOS: Electrical engineering, electronic engineering, information engineering, Mathematics - Numerical Analysis, Mathematics - Dynamical Systems, Mathematics - Optimization and Control

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
Green