Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Califo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
SIAM Journal on Applied Algebra and Geometry
Article . 2023 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2022
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Polyhedral Geometry of Pivot Rules and Monotone Paths

Authors: Alexander E. Black; Jesús A. De Loera; Niklas Lütjeharms; Raman Sanyal;

The Polyhedral Geometry of Pivot Rules and Monotone Paths

Abstract

Motivated by the analysis of the performance of the simplex method we study the behavior of families of pivot rules of linear programs. We introduce normalized-weight pivot rules which are fundamental for the following reasons: First, they are memory-less, in the sense that the pivots are governed by local information encoded by an arborescence. Second, many of the most used pivot rules belong to that class, and we show this subclass is critical for understanding the complexity of all pivot rules. Finally, normalized-weight pivot rules can be parametrized in a natural continuous manner. We show the existence of two polytopes, the pivot rule polytopes and the neighbotopes, that capture the behavior of normalized-weight pivot rules on polytopes and linear programs. We explain their face structure in terms of multi-arborescences. We compute upper bounds on the number of coherent arborescences, that is, vertices of our polytopes. Beyond optimization, our constructions provide new perspectives on classical geometric combinatorics. We introduce a normalized-weight pivot rule, we call the max-slope pivot rule which generalizes the shadow-vertex pivot rule. The corresponding pivot rule polytopes and neighbotopes refine monotone path polytopes of Billera--Sturmfels. Moreover special cases of our polytopes yield permutahedra, associahedra, and multiplihedra. For the greatest improvement pivot rules we draw connections to sweep polytopes and polymatroids.

27 pages, 6 figures

Keywords

Optimization and Control (math.OC), Applied Mathematics, Pure mathematics, FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO), Applied mathematics, Pure Mathematics, Mathematics - Optimization and Control, Mathematical Sciences

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Green