Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ SIAM Journal on Cont...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
SIAM Journal on Control and Optimization
Article . 2021 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2020
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimal Absorption of Acoustic Waves by a Boundary

Authors: Magoulès, Frédéric; Nguyen, Thi Phuong Kieu; Omnes, Pascal; Rozanova-Pierrat, Anna;

Optimal Absorption of Acoustic Waves by a Boundary

Abstract

In the aim to find the simplest and most efficient shape of a noise absorbing wall to dissipate the acoustical energy of a sound wave, we consider a frequency model described by the Helmholtz equation with a damping on the boundary. The well-posedness of the model is shown in a class of domains with d-set boundaries (N -- 1 $\le$ d < N). We introduce a class of admissible Lipschitz boundaries, in which an optimal shape of the wall exists in the following sense: We prove the existence of a Radon measure on this shape, greater than or equal to the usual Lebesgue measure, for which the corresponding solution of the Helmholtz problem realizes the infimum of the acoustic energy defined with the Lebesgue measure on the boundary. If this Radon measure coincides with the Lebesgue measure, the corresponding solution realizes the minimum of the energy. For a fixed porous material, considered as an acoustic absorbent, we derive the damping parameters of its boundary from the corresponding time-dependent problem described by the damped wave equation (damping in volume).

SIAM Journal on Control and Optimization, Society for Industrial and Applied Mathematics, In press

Country
France
Related Organizations
Keywords

15A06, sound absorption, wave propagation, Robin boundary condition, [MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA], 510, Absorbing wall, 35J05, Mathematics - Analysis of PDEs, 35L405, 35J25, [MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph], fractals, shape optimization, FOS: Mathematics, [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP], Helmholtz equation, [MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC], [MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA], Analysis of PDEs (math.AP)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
Green
bronze