
arXiv: 1907.02835
We consider several models (including both multidimensional ordinary differential equations (ODEs) and partial differential equations (PDEs), possibly ill-posed), subject to very strong damping and quasi-periodic external forcing. We study the existence of response solutions (i.e., quasi-periodic solutions with the same frequency as the forcing). Under some regularity assumptions on the nonlinearity and forcing, without any arithmetic condition on the forcing frequency $��$, we show that the response solutions indeed exist. Moreover, the solutions we obtained possess optimal regularity in $\varepsilon$ (where $\varepsilon$ is the inverse of the coefficients multiplying the damping) when we consider $\varepsilon$ in a domain that does not include the origin $\varepsilon=0$ but has the origin on its boundary. We get that the response solutions depend continuously on $\varepsilon$ when we consider $\varepsilon $ tends to $0$. However, in general, they may not be differentiable at $\varepsilon=0$. In this paper, we allow multidimensional systems and we do not require that the unperturbed equations under consideration are Hamiltonian. One advantage of the method in the present paper is that it gives results for analytic, finitely differentiable and low regularity forcing and nonlinearity, respectively. As a matter of fact, we do not even need that the forcing is continuous. Notably, we obtain results when the forcing is in $L^2$ space and the nonlinearity is just Lipschitz as well as in the case that the forcing is in $H^1$ space and the nonlinearity is $C^{1 + \text{Lip}}$. In the proof of our results, we reformulate the existence of response solutions as a fixed point problem in appropriate spaces of smooth functions.
41 pages including necessary appendix and references
response solutions, Almost and pseudo-almost periodic solutions to PDEs, Almost and pseudo-almost periodic solutions to ordinary differential equations, Applications of operator theory to differential and integral equations, Singular perturbations for ordinary differential equations, FOS: Mathematics, strong dissipation, Dynamical Systems (math.DS), singular perturbations, Mathematics - Dynamical Systems, Singular perturbations in context of PDEs
response solutions, Almost and pseudo-almost periodic solutions to PDEs, Almost and pseudo-almost periodic solutions to ordinary differential equations, Applications of operator theory to differential and integral equations, Singular perturbations for ordinary differential equations, FOS: Mathematics, strong dissipation, Dynamical Systems (math.DS), singular perturbations, Mathematics - Dynamical Systems, Singular perturbations in context of PDEs
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
