Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ SIAM Journal on Scie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2020
Data sources: zbMATH Open
SIAM Journal on Scientific Computing
Article . 2020 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2019
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
versions View all 5 versions
addClaim

Preconditioned Nonlinear Iterations for Overlapping Chebyshev Discretizations with Independent Grids

Preconditioned nonlinear iterations for overlapping Chebyshev discretizations with independent grids
Authors: Kevin W. Aiton; Tobin A. Driscoll;

Preconditioned Nonlinear Iterations for Overlapping Chebyshev Discretizations with Independent Grids

Abstract

The additive Schwarz method is usually presented as a preconditioner for a PDE linearization based on overlapping subsets of nodes from a global discretization. It has previously been shown how to apply Schwarz preconditioning to a nonlinear problem. By first replacing the original global PDE with the Schwarz overlapping problem, the global discretization becomes a simple union of subdomain discretizations, and unknowns do not need to be shared. In this way restrictive-type updates can be avoided, and subdomains need to communicate only via interface interpolations. The resulting preconditioner can be applied linearly or nonlinearly. In the latter case nonlinear subdomain problems are solved independently in parallel, and the frequency and amount of interprocess communication can be greatly reduced compared to linearized preconditioning.

Related Organizations
Keywords

Multigrid methods; domain decomposition for boundary value problems involving PDEs, Numerical analysis (educational aspects), polynomial interpolation, partition of unity, Parallel numerical computation, Numerical Analysis (math.NA), domain decomposition, Numerical interpolation, FOS: Mathematics, Preconditioners for iterative methods, Mathematics - Numerical Analysis, Numerical approximation and evaluation of special functions, additive Schwarz

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
bronze