Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ SIAM Journal on Scie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2018
Data sources: zbMATH Open
SIAM Journal on Scientific Computing
Article . 2018 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2016
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

High-Performance Tensor Contraction without Transposition

High-performance tensor contraction without transposition
Authors: Devin A. Matthews;

High-Performance Tensor Contraction without Transposition

Abstract

Tensor computations--in particular tensor contraction (TC)--are important kernels in many scientific computing applications. Due to the fundamental similarity of TC to matrix multiplication (MM) and to the availability of optimized implementations such as the BLAS, tensor operations have traditionally been implemented in terms of BLAS operations, incurring both a performance and a storage overhead. Instead, we implement TC using the flexible BLIS framework, which allows for transposition (reshaping) of the tensor to be fused with internal partitioning and packing operations, requiring no explicit transposition operations or additional workspace. This implementation, TBLIS, achieves performance approaching that of MM, and in some cases considerably higher than that of traditional TC. Our implementation supports multithreading using an approach identical to that used for MM in BLIS, with similar performance characteristics. The complexity of managing tensor-to-matrix transformations is also handled automatically in our approach, greatly simplifying its use in scientific applications.

24 pages, 8 figures, uses pgfplots

Related Organizations
Keywords

FOS: Computer and information sciences, G.4, Computer Science - Performance, tensor-to-matrix transformation, matrix multiplication, Other matrix algorithms, tensor contraction, high-performance computing, 15A69, Performance (cs.PF), multilinear algebra, Complexity and performance of numerical algorithms, Computer Science - Distributed, Parallel, and Cluster Computing, Multilinear algebra, tensor calculus, Computer Science - Mathematical Software, Distributed, Parallel, and Cluster Computing (cs.DC), Mathematical Software (cs.MS), performance

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    48
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
48
Top 10%
Top 10%
Top 10%
Green
bronze